On higher order Stickelberger-type theorems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order maximum persistency and comparison theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the sa...

متن کامل

Natural Inductive Theorems for Higher-Order Rewriting

The notion of inductive theorems is well-established in first-order term rewriting. In higherorder term rewriting, in contrast, it is not straightforward to extend this notion because of extensionality (Meinke, 1992). When extending the term rewriting based program transformation of Chiba et al. (2005) to higher-order term rewriting, we need extensibility, a property stating that inductive theo...

متن کامل

How to Prove Higher Order Theorems in First Order Logic

In this paper we are interested in using a first order theorem prover to prove theorems that are formulated in some higher order logic. To this end we present translations of higher order logics into first order logic with flat sorts and equality and give a sufficient criterion for the soundness of these translations. In addition translations are introduced that are sound and complete with resp...

متن کامل

Bernstein Type Theorems for Higher Codimensionj

We show a Bernstein theorem for minimal graphs of arbitrary dimension and codimension under a bound on the slope that improve previous results and is independent of the dimension and codimension. The proof depends on the regularity theory for the harmonic Gauss map and the geometry of Grassmann manifolds.

متن کامل

Moment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces

Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2013

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2013.02.015