On higher order Stickelberger-type theorems
نویسندگان
چکیده
منابع مشابه
Higher order maximum persistency and comparison theorems
We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the sa...
متن کاملNatural Inductive Theorems for Higher-Order Rewriting
The notion of inductive theorems is well-established in first-order term rewriting. In higherorder term rewriting, in contrast, it is not straightforward to extend this notion because of extensionality (Meinke, 1992). When extending the term rewriting based program transformation of Chiba et al. (2005) to higher-order term rewriting, we need extensibility, a property stating that inductive theo...
متن کاملHow to Prove Higher Order Theorems in First Order Logic
In this paper we are interested in using a first order theorem prover to prove theorems that are formulated in some higher order logic. To this end we present translations of higher order logics into first order logic with flat sorts and equality and give a sufficient criterion for the soundness of these translations. In addition translations are introduced that are sound and complete with resp...
متن کاملBernstein Type Theorems for Higher Codimensionj
We show a Bernstein theorem for minimal graphs of arbitrary dimension and codimension under a bound on the slope that improve previous results and is independent of the dimension and codimension. The proof depends on the regularity theory for the harmonic Gauss map and the geometry of Grassmann manifolds.
متن کاملMoment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces
Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2013
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2013.02.015